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ABSTRACT 

White-tailed deer (Odocoileus virginianus; deer) and human populations have expanded, and as 

a result, deer-vehicle collisions (DVCs) have become a primary concern. In particular, Arnold 

Air Force Base (AAFB) in Tullahoma, Tennessee, USA has had extensive problems with DVCs 

and has struggled to incorporate effective mitigation strategies. To address this issue, I initiated a 

study on AAFB to investigate deer behavior and factors increasing the likelihood of DVCs. 

 DVCs typically increase with peaks in deer activity during the breeding season (rut). I 

deployed GPS-ARGOS satellite collars on 10 adult males and 10 females during the summer of 

2010. I investigated movement rates, excursions, home ranges, and interactions throughout the 

fall-winter seasons of 2010, which included the rut. I partitioned the rut into 3 periods (pre-, 

peak-, and post-rut) based on estimation from fetal measurements from 16 females collected 

during the spring of 2011. Males increased movement rates, used core areas less, and took 

excursions as the rut peaked. Females showed constant use of core areas with no deviations in 

movement rates, but took excursions outside of home ranges during the rut. I documented a 

female that excursed during the peak-rut to interact with a male. I believe this was associated 

with breeding and was influenced by a lack of male presence when the female entered estrus or a 

result of participation in mate selection.  

 I used 8 years (2002 – 2009) of documented DVC locations at AAFB on major roads 

outside the Security Area to investigate temporal and spatial patterns. I tallied DVCs by month of 

occurrence to gain a better understanding of high-risk periods. I also measured and modeled land 

cover and transportation variables for DVC and random locations to identify important factors 

affecting DVC spatial distributions. I found DVCs were greatest during fall-winter, which 

coincides with increased deer activity during the rut at AAFB. My model results suggested pine 
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plantations, drainages, road intersections, and traffic volume were important determinants in 

DVCs. I believe the most pertinent mitigation strategy is to focus future implementation and 

management of pine plantations away from roads, especially in predominately hardwood forests. 
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PREFACE 

This study was initiated to address concerns regarding white-tailed deer-vehicle collisions. Data 

presented here were obtained in cooperation with Arnold Air Force Base, The University of 

Tennessee, and Tennessee Wildlife Resources Agency. 

 My research focused on deer behavior during the breeding season in addition to 

evaluating factors affecting the spatial distribution of deer-vehicle collisions. I have broken these 

data into 2 chapters and followed format specified by the Journal of Wildlife Management. 

Chapters will be individually submitted to peer-reviewed journals.  
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INTRODUCTION 

White-tailed deer (Odocoileus virginianus; deer) are socially and economically important in the 

United States (Miller et al. 2003). However, increases in deer and human populations have led to 

interactions that are dangerous for both species, particularly concerning deer-vehicle collisions 

(DVCs). Each year in the United States, it is estimated that DVCs result in >$1 billion in 

property damage and personal injury, including >200 human fatalities (Hansen 1983, Conover et 

al. 1995, Biggs et al. 2004, Ng et al. 2008). DVCs have also been shown to result in deer fatality 

in >90% of collisions (Allen and McCullough 1976). Conflicts at the road interface between 

humans and deer will likely increase with the continuing expansion of urban areas nationwide 

(Ramp et al. 2005). 

 Studies have shown DVCs are temporally and spatially correlated, meaning they are 

aggregated in time and space (Finder et al. 1999, Ng et al. 2008). Peaks in deer activity help 

explain temporal DVC aggregations, which are typically amplified during the fall-winter 

breeding season (Allen and McCullough 1976, Finder et al. 1999). Studies on spatial 

aggregations of road-kills have primarily shown that in addition to population density, two major 

factors influence road-kill rates: (1) proximity of cover and wildlife movement corridors, and (2) 

traffic volume and speed (Forman et al. 2003). 

Arnold Air Force Base (AAFB) has had a substantial DVC problem with >250 reported 

(2002 ‒ 2009) on major roads outside of the Security Area. Information regarding deer behavior 

and factors enhancing DVCs is needed to accurately implement mitigation strategies. To address 

this concern, The University of Tennessee initiated a study to investigate deer activity during the 

breeding season in addition to land cover and transportation variables involved in spatial DVC 

aggregations. 
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I used these data to formulate 2 manuscript chapters. Chapter 1 evaluates deer behavior 

during the breeding season, which includes male and female excursions, movement rates, home 

ranges, and interactions. Chapter 2 investigates the influence of surrounding land cover and 

transportation variables, such as adjacent cover types, drainages, road intersections, traffic 

volumes, and speed limits, on the probability of DVC occurrences.  
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CHAPTER I. BREEDING MOVEMENTS, HOME RANGE, AND 

INTERACTIONS OF MALE AND FEMALE WHITE-TAILED DEER 
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ABSTRACT 

To better understand white-tailed deer (Odocoileus virginianus; deer) reproductive biology, we 

looked at simultaneous movements and interactions of both males and females during the 

breeding season (rut). We evaluated excursions, interactions, movement rates, and core area use 

of 7 adult (≥2.5-yr-old) males and 9 females (1 1.5-yr-old and 8 ≥2.5-yr-olds) during the rut on 

Arnold Air Force Base in Tennessee, USA from September 2010 to March 2011 using GPS-

ARGOS satellite collars with locations taken every 3 h. We partitioned the rut into 3 periods 

(pre-, peak-, and post-rut) using fetal measurements taken from 16 females collected 1 – 11 

March 2011. We determined fall-winter (seasonal) 90% fixed kernel home ranges and 50% core 

areas. We defined an excursion as ≥2 consecutive locations outside the 90% home range 

extending beyond a mean distance traveled between 3-h locations for that individual during the 

fall-winter season. Males had the greatest movement rates and used core areas less during the 

peak-rut. Four of 7 males took 7 excursions during the rut. Females showed constant use of core 

areas through all rut periods with no change in movement rates. However, 6 females took 11 

excursions during the rut. One collared female left her home range and interacted with a collared 

male at the periphery of his home range for ≥9 h during the peak-rut. We believe this excursion 

was associated with breeding. This excursion may have been due to lack of males in her area or a 

result of direct participation in mate selection.  

KEY WORDS excursions, Global Positioning System (GPS), interactions, mate choice, 

movements, Odocoileus virginianus, rut, sexual selection, white-tailed deer 
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INTRODUCTION 

Male and female deer segregate into groups except during the breeding season (rut). Males will 

typically become solitary during the rut, but interactions between genders increase (Hirth 1977, 

Nelson and Mech 1984, Ozoga and Verme 1985). Deer rely on chemical communication to 

convey information on identity, dominance status, physical condition, and reproductive status 

(Miller et al. 2003). Males use olfactory signposts, such as “rubbing” and “scraping”, during the 

rut which is believed to advertise these cues (Hirth 1977, Miller et al. 1987). Antler rubs on 

saplings serve as visual marks and chemical signposts from male forehead glands that likely 

convey territory and dominance (Atkeson and Marchinton 1982, de Vos 1967, Moore and 

Marchinton 1974). Antler rubbing typically starts with velvet removal from ossified antlers, 

peaks prior to rut, and gradually declines with the onset of increased scraping activity (Kile and 

Marchinton 1977, Nielson et al. 1982). Scrapes are pawed depressions to bare soil beneath 

overhanging tree branches that are marked with secretions from forehead glands, preorbital 

glands, or saliva (Alexy et al. 2001, Miller et. al 1987). Males will usually urinate or rub-urinate 

(urinating over tarsal glands while rubbing together) in association with scraping (Haugen 1959, 

Moore and Marchinton 1974). Scraping activity is typically greatest before or during the peak-rut 

(Alexy et al. 2001, Kile and Marchinton 1977). Females have been documented urinating in 

scrapes which was thought to advertise their location to males (Moore and Marchinton 1974). 

However, Alexy et al. (2001) used remote video monitoring and found females visited scrapes 

more frequently than males, but were less likely to deposit scent from branch-marking or 

urinating suggesting mate evaluation rather than presence advertisement.  

Males typically increase movement rates and expand or shift home ranges during the rut 

(Kammermeyer and Marchinton 1976, Marchinton and Hirth 1984, Tierson et al. 1985). Recent 
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GPS-telemetry studies showed males made excursions outside of their home ranges (Karns et al. 

2011) and can increase daily movements (Webb et al. 2010) during the rut, which may be 

indicative of searching for receptive females. 

Two primary strategies for females have been proposed for ensuring timely breeding: 

“sit-and-wait” (H‒lzenbein and Schwede 1989) and “active” (Labisky and Fritzen 1998). The 

sit-and-wait strategy is characterized by reduced movements by females and confinement within 

core areas of their home ranges during the rut, presumably to make locations more predictable 

for searching males (H‒lzenbein and Schwede 1989, Ivey and Causey 1981).  

Contrary to a sit-and-wait strategy, females have used active searching and taken 

excursive movements relative to estrus (H‒lzenbein and Schwede 1989, Sawyer 1989). Ozoga 

and Verme (1975) documented increased pacing activity among females during estrus. Labisky 

and Fritzen (1998) observed increases in mobility for females in a low-density population with a 

female-biased adult sex ratio during the peak- and post-rut, implying females were adopting a 

search strategy to ensure successful breeding with few males. Even with an equal adult sex ratio, 

D’Angelo et al. (2004) reported females made exaggerated movements related to estrus in a low-

density population. Kolodzinski et al. (2010) also found excursive movements of females during 

peak rut in a moderate-high population density with a nearly equal adult sex ratio. These females 

did not have to increase movements to find a mate, but may have been searching for preferred 

mates.  

Excursive movements for both males and females could be associated with disturbances. 

Root et al. (1988) found increased female movements with high levels of human disturbance 

from hunting. Vercauteren and Hygnstrom (1998) documented that 53% of resident female deer 

were flushed from home ranges by hunters, but usually returned within the next morning. 
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Sweeney et al. (1971) concluded deer could easily be chased outside their normal home ranges 

when exposed to dog hunting but returned within 1 day. Hood and Inglis (1974) studied the 

effects of cattle roundup disturbances and found males may temporarily leave home ranges but 

females showed site fidelity and usually took circuitous flight paths within their home range. In 

contrast, Karns et al. (2008) determined that males did not venture outside of home ranges in 

response to hunter-related disturbances. Abundance of dense cover is likely the primary factor 

causing deer to remain in home ranges during disturbance (Sweeney et al. 1971, Vercauteren and 

Hygnstrom 1998). 

We are not aware of any GPS-collar studies addressing behavior of both males and 

females simultaneously. Furthermore, most tracking studies have been conducted with 

conventional VHF-telemetry and an in-depth analysis of male and female behavior was not 

possible because of the limited number and accuracy of radio locations during the relatively short 

estrous period (Kolodzinski et al. 2010). Also, monitoring is often limited to daytime hours and 

favorable weather conditions (Rodgers et al. 1996). Therefore, our objectives were to evaluate 

behavior of males and females during the rut, characterize excursions, and evaluate the potential 

for mate selection through deer interactions. We predicted males would increase movement rates 

and use core areas less as rut peaked, as well as take excursions, to maximize breeding 

opportunities. We hypothesized females would conform to an active search strategy during the 

rut, in which we expected increased movement rates, lessened use of core areas, and excursive 

movements. 

STUDY AREA 

Arnold Air Force Base (AAFB) encompassed 15,815 ha located between Manchester, 

Tullahoma, and Winchester in Coffee and Franklin counties, Tennessee. Cultivated loblolly pine 
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(Pinus taeda) plantations and oak- (Quercus spp.) dominated hardwood forests covered 11,553 

ha at AAFB. The mid- and understories were comprised mostly of dogwoods (Cornus spp.), 

maples (Acer spp.), sassafras (Sassafras albidum), sourwood (Oxydendrum arboretum), 

blueberries (Vaccinium spp.), hickories (Carya spp.), and blackgum (Nyssa sylvatica). 

Grasslands and early-successional vegetation, primarily in utility rights-of-way, comprised 898 

ha. The remaining land cover (1,895 ha) was buildings, structures, roads, wildlife food plots, and 

open, mowed areas surrounding these features (United States Department of Defense 2006). 

 AAFB was divided into 6 Wildlife Management Area (WMA) units and a 1,489-ha high-

fenced Security Area. Although the 2.13-m tall fence surrounding the Security Area could 

influence deer movements, it did not exclude deer from crossing inside and out. Units were 

jointly managed by the Department of Defense and Tennessee Wildlife Resources Agency 

(TWRA) and open to public hunting. Deer hunting dates were weekend-oriented as either 2- or 

3-day hunts. In 2010, there were 1 young sportsman, 4 archery, and 5 shotgun/muzzleloader 

hunts. Beaver (2011) reported deer densities of 6.7 deer/km2 in unit 1 and 8.7 deer/km2 in unit 2. 

Adult sex ratio was about 2 females to 1 male in the 2 units.   

METHODS 

Deer capture 

All capture procedures were approved by The University of Tennessee Institutional Animal Care 

and Use Committee (UT-IACUC #1887) and followed American Society of Mammalogists 

guidelines (Sikes et al. 2011). We used pneumatic dart rifles (Dan-Inject, Wildlife 

Pharmaceuticals, Fort Collins, Colorado, USA) with 2-ml telemetry darts (Pneu-dart, Inc., 

Williamsport, Pennsylvania, USA) to inject deer with chemical immobilization drugs. We used 2 

drug combinations: medetomidine-ketamine-telazol (MKT; Muller et al. 2012) and xylazine-
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telazol (XT; Murray et al. 2000). The MKT consisted of 150 ug/kg medetomidine (40 mg/ml; 

ZooPharm, Fort Collins, Colorado, USA), 1.5 mg/kg ketamine (100 mg/ml Ketaset , Fort 

Dodge Animal Health, Ford Dodge, Iowa), and 1.0 mg/kg Telazol (50 mg/ml tiletamine and 50 

mg/ml zolazaepam; 100 mg/ml total of Telazol; Ford Dodge Animal Health). The XT was 

comprised of 2.3 mg/kg xylazine (300 mg/ml; Zoo Pharm) and 5 mg/kg Telazol. We assumed 

an average mass of 70.0 kg for males and 50.8 kg for females.  

We targeted deer along roadsides throughout AAFB via spotlight as well as within WMA 

units 1 and 2 using tree stands and bait. We placed immobilized deer in a sternal position and 

monitored physiological parameters (heart rate, respiratory rate, oxygen saturation, and 

temperature) during handling (Muller et al. 2012). We weighed each deer and determined age 

according to tooth replacement and wear, and body characteristics when possible. Cattle and 

metal ear tags, and Lotek GPS-ARGOS satellite collars (GPS 7000SA Collars, ARGOS PTT, 

Lotek Wireless, Inc., New Market, Ontaria, Canada), were attached. Each collar weighed 

approximately 450 g. After handling, we injected each deer intramuscularly with antagonists for 

medetomidine consisting of atipamezole (0.35 mg/kg; 5.0 mg/ml Antisedan®, Pfizer Animal 

Health, Exton, Pennsylvania, USA) or with a combination of atipamezole (0.35 mg/kg) with 

Tolazoline (200 mg/ml; 4.0 mg/kg) mixture and monitored recovery.  

GPS collars and data import 

We programmed GPS-ARGOS collars to acquire locations every 3 h. All acquired GPS locations 

were stored on-board the collar and up to 90 ARGOS locations were stored in temporary 

memory and transmitted via ARGOS satellites every 7 days. Each collar had a unique VHF 

frequency (148 ‒ 150 MHz) that could be tracked using a receiver (Biotracker scanning 

receiver, Lotek Wireless, Inc.). Collars were also programmed to record and transmit a mortality 
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signal to ARGOS satellites after remaining stationary for 4 h and could be tracked from the 

ground via increased pulse rates. 

We used store-on-board GPS locations for collars that were recovered through hunter 

harvest. We downloaded these locations via a link unit and software (GPS Host, Lotek 

Engineering, Ontario, Canada). We used ARGOS locations for collars that were not retrieved 

from deer. ARGOS locations were emailed to us every 6-7 days and converted (ARGOS-GPS 

Data Processor Version 3.4, Lotek software) into a format compatible with ArcGIS® 

(Environmental Systems Research Institute (ESRI), Inc., Redlands, California, USA). We 

imported all locations into ArcGIS 9.2 (ESRI) and projected in Universal Transverse Mercator 

(UTM) North American Datum 1983 Zone 16 North (m). We removed any erroneous locations 

involving impossible dates, times, or coordinates from the analyses. 

GPS collar testing 

We placed GPS-ARGOS collars in the 4 major vegetation types of AAFB to test accuracy and 

performance. One collar was tested 1 – 11 March 2011 in an immature pine plantation. From 11 

March to 1 April 2011, 3 collars were tested in an open field, mature pine, and mature hardwood 

setting. 

We placed collars at approximately 1-m height aboveground, in an upright position to 

simulate the height and orientation of the collar on a deer. After testing, we used a Trimble 

Pathfinder® ProXT™ receiver (Trimble Navigation Limited, California, USA) with sub-meter 

accuracy and Bluetooth connection with ArcPad Version 8.0 (Environmental Systems Research 

Institute, Inc., Redlands, CA) to take multiple points for the locations in which collars were 

placed. We averaged these points to represent the true location of the collars. 
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We used ArcGIS 9.2 to determine accuracy of store-on-board GPS locations in each 

vegetation type by calculating Euclidean distances to the true location. We did not analyze 

accuracy of ARGOS locations because they were analogous to the store-on-board GPS locations 

but rounded up to conserve memory for temporary storage and transmission. We analyzed collar 

transmission success for store-on-board GPS and ARGOS locations separately to evaluate 

differences in performance relative to vegetation type. We also evaluated transmission success of 

collars deployed on deer by computing the number of locations that should have been acquired 

for each deer until the collar battery life failed or the deer was harvested. We compared these 

estimates to the number actually acquired.  

Female conception 

A special collection of female deer was conducted by the TRWA during March 2011 to estimate 

conception for females during the 2010 rut at AAFB. We determined female age (at time of 

conception) up to 6.5 yrs according to tooth replacement and wear, and body characteristics. We 

also measured the fetuses to determine the date of conception using a fetal scale (Hamilton et el. 

1985). We used a 95% CI to determine peak-rut based on conception dates. 

Rut excursions and core area use 

We used Home Range Tools (Rodgers et al. 2007) in ArcGIS 9.2 to generate fall-winter 

(seasonal) 90% fixed kernel home ranges and 50% core areas for each deer. We used seasonal 

equinox dates from the United States Naval Observatory website (www.usno.navy.mil/USNO) to 

define fall-winter as 23 September 2010 – 19 March 2011. We defined an excursion as ≥2 

consecutive locations outside the 90% home range extending beyond a mean distance traveled 

between 3-h locations for that individual during the fall-winter season (Fig. 1). We documented 

the number of excursions, time spent on excursions, maximum distance traveled outside of 90% 
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home ranges, and any interactions with other collared deer. We calculated the percentage of 

points within the 50% seasonal core areas using a minimum of 30 locations. We evaluated core 

area use during pre-, peak-, and post-rut, as well as “before” and “after” periods, which preceded 

and followed rut periods. 

Movements 

We used Hawth’s Tools (Beyer 2004) in ArcGIS 9.2 to calculate Euclidean distances between 

consecutive locations. We divided the distance by the time interval between locations to 

standardize movements into rates (m/h). We only used consecutive locations ≤6 h apart. We 

compared movement rates for males and females during pre-, peak-, and post-rut, as well as 

“before” and “after” periods. We used a 2-way, repeated measures analysis of variance 

(ANOVA) with Kenward-Roger adjustment for degrees of freedom to test if movement rates for 

males and females differed within periods. 

We also compared movement rates during peak-hunting and days when hunters were not 

present to evaluate the potential effects of hunting pressure on deer movements. We chose 2 

periods for peak-hunting (26 ‒ 28 November 2010 and 3 ‒ 5 December 2010), which were 

shotgun/muzzleloader hunts (Friday ‒ Sunday) with the highest hunter turnout. For comparison, 

we chose 2 periods (23 ‒ 25 November and 30 November 2010 ‒ 2 December 2010) preceding 

the peak-hunting days (Tuesday ‒ Thursday). We only included deer that inhabited WMA units 

2-6 because unit 1 was not open for hunting during these dates. We used 2-way ANOVA to test 

for hunting effects on movement rates for males and females. 

In all statistical analyses, we used SAS 9.3 (PROC MIXED; SAS Institute, Cary, NC) 

and least squares mean separation (adjusted for unbalanced data) using Tukey-Kramer adjusted P 

values (α = 0.05 for significance).  
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RESULTS 

GPS collar performance 

Eight-six percent (n = 539) of store-on-board GPS locations were within 10 m of the true testing 

location across all vegetation types. However, overall transmission success was much higher for 

store on-board GPS (92%) than ARGOS (63%) locations. Open field had the least location error 

(�� = 2.81 m, SE = 0.17 m, n = 132). Location error distance increased with canopy cover, yet 

collar accuracy still performed well: young pine (�� = 8.23 m, SE = 0.97 m, n = 69), mature 

hardwood (�� = 8.28 m, SE = 0.55 m, n = 169), mature pine (�� = 10.12 m, SE = 0.63 m, n = 169). 

The relatively flat terrain at AAFB could have contributed to low location error. Open field 

transmission success was lowest for both GPS (78%) and ARGOS (59%) locations. These results 

suggest the ability to successfully acquire and transmit a location may have been dependent more 

on the functionality of each individual collar rather than vegetation type during our tests.  

We equipped 10 females (1 1-yr-old and 9 ≥2-yr-olds) and 10 adult (≥2-yr-olds) males 

(30 March – 20 July 2010) with GPS-ARGOS collars. However, because of collar malfunctions, 

only 9 females and 7 males were used in the analyses. GPS-ARGOS collars acquired 5,406 

female and 5,353 male locations during the fall-winter seasons. Transmission success for store-

on-board GPS (81%; range: 43% – 98%) was higher than ARGOS locations (59%; range: 33% – 

80%) for collars deployed on deer, excluding 1 female with long, unexplained periods of missing 

store-on-board GPS and ARGOS locations. 

Similar studies have applied screenings to remove locations with high associated dilution 

of precision (DOP) values (Kolodzinski 2010, Karns 2011). However, our collar tests showed 

only 14% of GPS locations had DOP values ≥ 5 with a resulting mean location error of 12.68 m 

(SE = 1.31 m). GPS locations with DOP values < 5 (86%) averaged 6.68 m (SE = 0.28 m) from 



14 
 

the true testing location. Therefore, given high accuracy of the GPS locations, we did not apply 

screening. Also, screening could only be applied to store-on-board GPS locations because DOP 

information was not available for ARGOS satellite-downloaded data. 

Timing of Conception 

The TWRA collected 16 females from 1 to 11 March 2011. Ages of deer (at time of conception) 

were 1.5 (n = 1) and 3.5 – 6.5+ yrs (n = 15; �� = 5.0 yrs). Conception dates ranged from 11 

November 2010 – 8 January 2011 (�� = 24 November 2010). Six females were bred 22 – 25 

November 2010. We used a 95% CI to identify a 19-day period (18 November – 6 December 

2010) as peak-rut. Nineteen days were partitioned before and after peak-rut to represent pre- (30 

October – 17 November 2010) and post-rut (7 – 25 December 2010) periods. 

Rut excursions and Core Area Use 

Three adult males and 2 females that were collared were harvested during peak-rut of the 2010-

2011 hunting season. Four adult males made a total of 7 excursions during pre- (1), peak- (4), 

and post-rut (2) periods, and 6 females made a total of 11 excursions during pre-(2), peak- (5), 

and post-rut (4) periods (Table 1). One male and female interacted ≥ 9 h during the peak-rut at a 

site beyond their home ranges (Fig. 2). Mean excursion time was 7.3 h (SE = 2.4 h) for males 

and 10.4 h (SE = 1.2 h) for females. Mean maximum excursion distance before returning to 

home ranges was 838 m (SE = 187 m) for males and 676 m (SE = 90 m) for females. Male use of 

core areas averaged 73% (n = 7) before the rut, 51% (n = 7) during the pre-rut, 32% (n = 6) 

during the peak-rut, 59% (n = 4) during the post-rut, and 56% (n = 4) after the rut.  Female use of 

core areas remained relatively constant throughout fall-winter season: “before” (71%; n = 8), 

pre-rut (62%; n = 8), peak-rut (64%; n = 8), post-rut (63%; n = 6), and “after” (63%; n = 6). 
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Movements 

Overall movement rates were greater for males than females (P ≤ 0.001) throughout the fall-

winter season. Movement rates among males increased during peak- and post-rut periods, but 

female movement rates did not differ (Table 2). Hunting pressure did not affect male (n = 5) 

movement rates (P = 0.314; hunting pressure: �� = 168.7 m/h, SE = 32.7; no pressure: �� = 186.6 

m/h, SE = 32.8).  Female (n = 4) movement rates were also not affected by hunting pressure (P = 

0.221; hunting pressure: �� = 90.3 m/h, SE = 13.8; no pressure: �� = 75.8 m/h, SE = 13.3). 

DISCUSSION 

Male reproductive success among mammals has been linked to fighting ability and is dependent 

on superior body and weapon development (Clutton-Brock et al. 1979, 1982, Cowlishaw and 

Dunbar 1991) which may allow access to specific females. Among white-tailed deer, dominance 

is typically associated with older-aged males because of increased antler and body development. 

However, DeYoung et al. (2009) found breeding was distributed among males in all age classes 

across 3 wild deer populations with no evidence of breeding skewed toward any dominant 

individuals. Successful breeding in subordinates suggest male white-tailed deer strategies may 

differ from that of other highly polygynous cervids in which lekking, territoriality, or harem 

defense is vital to mating success (Clutton-Brock 1989, DeYoung et al. 2009). Instead, mate-

searching or alternate strategies not concerning dominance may enhance breeding opportunities 

(DeYoung et al. 2009). Our data showed males exhibited greater movement rates and used core 

areas less during peak rut, and took excursions which corresponded with our expectations and 

previous GPS telemetry studies (Karns et al. 2011, Webb et al. 2010) implying a mate-searching 

or “roaming” strategy to facilitate maximal breeding opportunities. 
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Females showed consistent use of core areas throughout the fall-winter season with no 

deviations in movement rates, which does not coincide with neither sit-and-wait or active 

strategies. However, 6 of 7 females took excursions during pre-, peak-, and post-rut periods 

which may imply active mate-searching. We documented 1 female that left her home range and 

closely interacted with a male at the periphery of his home range ≥9 h. We do not know if this 

interaction resulted in copulation, but given the timing of the female excursion (compared to 

conception of other deer in the area) and the time spent together, we believe the interaction was 

associated with breeding. Females enter estrus for approximately 24 h (Verme 1965, Warren et 

al. 1978) but can extend estrous behavior if not bred (White et al. 1995). 

Excursive movements by female deer during the rut could be a result of: (1) hunting 

pressure, (2) males chasing or harassing females outside of home range areas, (3) forced mate-

searching after females were not successfully located by a searching male, or (4) active mate-

searching demonstrating sexual selection for specific males. Increases in deer movements have 

been reported with high hunting pressure (Root et al. 1988), but we found no significant 

differences in male or female movement rates related to hunting. Additionally, only 3 of 18 

excursions were documented during the 2 peak-hunting weekends. Therefore, we do not believe 

hunting pressure was a primary cause of excursions outside home range areas. 

Male harassment or chasing of females can occur prior to copulation (Marchinton and 

Hirth 1984). Cox and Boeuf (1977) theorized female avoidance behavior may be a form of 

sexual selection by allowing females to evaluate male fitness during pursuit. Three of 6 does in 

our study completed multiple excursions during the rut, which could be indicative of male 

pursuits. Whether females would leave their home ranges during male harassment and expose 

themselves to unknown predation risks in unfamiliar areas is not known. Rosenberry et al. (1999) 
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demonstrated the potential risk of hunting mortality when they found 22 of 38 dispersing 

yearling males were harvested. Vulnerability in unfamiliar terrain may increase predation of deer 

(Nelson and Mech 1991). Studies have shown varying flight responses to disturbance (Hood and 

Inglis 1974, Karns et al. 2008, Root et al. 1988, Sweeney et al. 1971, Vercauteren and 

Hygnstrom 1998); however, female flight response from male harassment has not been 

extensively studied.  

The preceding locations (0600 h) of the male and female relative to their initial 

interaction locations (0900 h) during the peak-rut in our study do not suggest harassment or 

pursuit from that male (Fig. 2). The female inhabited a wooded-anthropogenic transition area on 

the edge of AAFB’s boundary and the outskirts of the city of Tullahoma. The small, fragmented 

woodlots likely did not support many males. The male involved in the interaction was not near 

the female before she excursed although their home ranges overlapped. It is possible that no 

males were present when she entered estrus and she had to excurse to ensure successful 

reproduction. 

It is also possible that males were in close proximity when the female entered estrus, yet 

she chose to excurse to find a more suitable breeding partner. Female mate selection is not well 

documented in white-tailed deer. Among the cervids, male antlers are not only used in 

intraspecific combat (Clutton-Brock 1982), but may be indicators of good genes, parasite 

resistance (Ditchkoff et al. 2001), and sperm production and quality (Malo et al. 2005). 

However, whether female deer perceive superior body or antler development as honest signs of 

quality or status to choose a mate is still unknown. Geist (1998) proposed that females choose 

male mates with superior characteristics, but this has not been proven in deer. Theoretically, 

females should select for specific males with superior genes considering the high parental 
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investment of gestation and lactation compared with minimal energetic costs for male 

fertilization (Clutton-Brock et al. 1982).  

Female mating preferences in mammals should be highly developed, but may be 

confounded with male competition or attempted constraint of female choice by breeding males 

(Clutton-Brock and McAuliffe 2009). Additionally, individual female deer cannot be readily 

identified and therefore field observations of behavior may have overlooked female movements 

indicative of selection. Observers have been able to monitor individual males throughout the rut 

and make inferences on reproductive strategies based on individual behaviors. However, GPS 

telemetry allows for improved tracking of individual females during estrous periods. Our results 

and other GPS studies (D’Angelo et al. 2004, Kolodzinski et al. 2010) suggest females may exert 

more energy to ensure reproductive success than originally thought by demonstrating excursions 

within varying population densities and sex ratios during the rut. However, whether excursions 

are attributed to male harassment, lack of male presence during estrus, or female mate selection 

is still not proven.  
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APPENDIX



 

Figure 1. Example of an excursion for a GPS
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Figure 1. Example of an excursion for a GPS-collared female during the rut at Arnold Air Force 

Base, Tullahoma, Tennessee, USA. An excursion was characterized as ≥2 consecutive locations 

outside the 90% home range extending beyond a mean distance traveled between 3

for that individual during the fall-winter season.  

 

collared female during the rut at Arnold Air Force 

consecutive locations 

a mean distance traveled between 3-h locations 



 

Figure 2. Interaction of a GPS-collared male and female on 19 November 2010 during the peak

rut at Arnold Air Force Base, Tullahoma, Tennessee, USA. 

interactive locations at the given time.

range after 0600 h and joined with the male on the periphery of his home range. They stayed in 

close proximity for ≥9 h (0900 – 

28 

collared male and female on 19 November 2010 during the peak

rut at Arnold Air Force Base, Tullahoma, Tennessee, USA. The connecting lines represent their 

interactive locations at the given time. The female excursed outside of her seasonal 90% home 

range after 0600 h and joined with the male on the periphery of his home range. They stayed in 

 1800 h) before the male separated between 1800 and 2100 h.

 

collared male and female on 19 November 2010 during the peak-

lines represent their 

sonal 90% home 

range after 0600 h and joined with the male on the periphery of his home range. They stayed in 

1800 h) before the male separated between 1800 and 2100 h. 
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Table 1. Male and female excursion records during 3 rut periods at Arnold Air Force Base, 

Tullahoma, Tennessee, USA. We partitioned dates based on conception using fetal scale 

measurements of 16 collected females (1 – 11 March 2011). 

ID
a 

Gender Date Rut period
b 

Time
c 

Excursion distance
d 

      

80673 F Nov. 19 Peak-rut 18 520 

      

  Dec. 15 Post-rut 9 682 

      

  Dec. 17 Post-rut 9 557 

      

80674 F Nov. 27 Peak-rut 6 521 

      

80675 F Nov. 7 Pre-rut 6 584 

      

  
Nov. 20 Peak-rut 9 603 

      

80676 F Nov. 27 Peak-rut 9 946 

      

81789 F Nov. 13 Pre-rut 18 475 

      

  
Dec. 2 Peak-rut 12 1475 

      

  Dec. 15 Post-rut 9 454 

      

85133 F Dec. 13 Post-rut 9 621 

      

83864 M Dec. 10 Post-rut 6 1951 

      

84168 M Nov. 15 Pre-rut 6 647 

      

  
Dec. 6 Post-rut 6 696 

      

84172 M Nov. 24 Peak-rut 6 564 

      

  Dec. 2 Peak-rut 12 754 

      

  
Dec. 3 Peak-rut 9 637 

      

84182 M Nov. 22 Peak-rut 6 616 
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Table 1 continued. 

a Identification no. unique to individual deer 

b Periods partitioned into pre-rut (30 October – 17 November 2010), peak-rut (18 November – 6 

December 2010), and post-rut (7 – 25 December 2010) 

c Minimum excursion time (h) using consecutive 3-h locations 

d Distance (m) measured from furthest excursion locations to closest edges of 90% seasonal 

home range   
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Table 2. Male and female least squares mean movement rates (m/h) for 5 periods during the fall-

winter seasons at Arnold Air Force Base, Tullahoma, Tennessee, USA. We partitioned dates 

based on conception using fetal scale measurements of 16 collected females (1 – 11 March 

2011). 

Period
a
 Males

b 
Females

b 

 m/h (SE) m/h (SE) 

   

Before 81.8 (13.1) B 74.3 (11.6) A 

   

Pre-rut 140.4 (13.1) AB 84.2 (11.6) A 

   

Peak-rut 173.4 (13.1) A 78.2 (11.6) A 

   

Post-rut 154.0 (16.8) A 87.5 (13.0) A 

   

After 116.6 (17.3) AB 77.3 (13.2) A 

   

Standard errors for least square means in parenthesis 

a Periods partitioned into before (23 September – 29 October 2010), pre-rut (30 October – 17 

November 2010), peak-rut (18 November – 6 December 2010), post-rut (7 – 25 December 

2010), and after (26 December 2010 – 19 March 2011) 

b Different letter groupings indicate differences among periods (P < 0.05) 

  



32 
 

CHAPTER II. FACTORS INFLUENCING WHITE-TAILED DEER-VEHICLE 

COLLISIONS 
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ABSTRACT 

White-tailed deer-vehicle collisions (Odocoileus virginianus; DVCs) are a concern for the 

public. Previous studies have shown that DVCs are spatially or temporally correlated. However, 

factors affecting spatial aggregations of DVCs have primarily focused on a landscape scale. 

Understanding fine-scale spatial relationships of DVCs should help facilitate mitigation efforts to 

reduce DVCs. We evaluated 8 years of DVC locations (2002 – 2009) to random locations along 

major roads at Arnold Air Force Base in Middle Tennessee. We measured land cover (percentage 

of adjacent cover types within 125 m, distance to nearest drainages) and transportation (traffic 

volume, speed limits, and distance to nearest road intersections) variables for DVC and random 

locations to evaluate possible factors increasing the likelihood of DVCs. We used logistic 

regression to model variables for DVC and random locations and conducted model selection 

using Akaike’s second-order information criterion (AICc) scores. We confirmed variable 

importance using model-averaged beta (β) estimates. The presence of pine plantations 

surrounding DVCs along with intersecting drainages were important land cover variables. Road 

intersections, traffic volume, and speed limits were all important transportation variables in DVC 

occurrence. We believe the most effective mitigation strategy is to focus future implementation 

and management of pine plantations away from roads, especially in predominately hardwood 

forests. Our results can be used throughout much of the Southeast where pine plantations and 

hardwood forests are juxtaposed alongside roadways. 

KEY WORDS deer-vehicle collision, highway mortality, logistic regression, modeling, 

Odocoileus virginianus, white-tailed deer  
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INTRODUCTION 

White-tailed deer (Odocoileus virginianus; deer) are the most economically beneficial game 

species in North America (Miller et al. 2003). However, deer can cause problems including deer-

vehicle collisions (DVCs), property damage, and decreased agricultural productivity (Conover et 

al. 1995). Deer abundance and their geographic range have increased over the past century 

(McShea et al. 1997, Finder et al. 1999) from an estimated 500,000 in the early 1900s to current 

estimates exceeding 20 million individuals (Cook and Daggett 1995, Hubbard et al. 2000, 

Grovenburg et al 2008). Both human population and development are also on the rise, resulting 

in increased deer-human interactions (Finder et al. 1999, Squires 2002, Grovenburg et al. 2008).  

 Deer-human interactions have resulted in escalating annual DVCs (Conover et al. 1995, 

Romin and Bissonette 1996). More than1 million DVCs occur every year in the United States, 

resulting in >$1 billion in property damage and personal injury (Conover et al. 1995, Ng et al. 

2008). It is also estimated that 4–5% of DVCs result in human injury, including >200 human 

fatalities annually (Hansen 1983, Conover et al. 1995, Biggs et al. 2004). Nationwide, estimates 

of damage resulting from DVCs from 1981 to 1991 averaged approximately $2,000 per accident 

(Romin and Bissonette 1996, Biggs et al. 2004).  

Roads impact wildlife populations by forming barriers to movements, which can 

fragment populations and cause isolation from resources and mates (Richardson et al. 1997, Dyer 

et al. 2002, Ramp et al. 2005). However, the most apparent impact of roads is the increasing 

number of fatalities of animals because of vehicle collisions (Ramp et al. 2005, Langen 2009). In 

particular, Allen and McCullough (1976) found DVCs result in deer fatalities in >90% of 

collisions. Conflict between humans and wildlife, especially deer, at the road interface will likely 

increase with the continuing expansion of urban areas nationwide (Ramp et al. 2005). 
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DVCs are not temporally or spatially random, but may be aggregated in time and space 

(Finder et al. 1999, Ng et al. 2008). DVCs are typically amplified around dawn and dusk, which 

coincides with deer crepuscular activity patterns, or after dark when driver visibility is lessened 

(Allen McCullough 1976, Finder et al. 1999). DVCs also tend to peak during the fall-winter 

breeding season, when movement activity tends to escalate (Allen and McCullough 1976, Finder 

et al. 1999). There also may be a lesser peak during spring, which is attributed to dispersal of 

young (Reilly and Green 1974, Finder et al. 1999, Etter et al. 2002). Although the predominant 

sex involved in vehicle collisions is female, shifts in favor of males can result from seasonal 

peaks, which are stimulated primarily by breeding (Allen and McCullough 1976).  

Peaks in human and deer activity may help explain temporal aggregations, but more 

information is needed on factors influencing the spatial aggregation of DVCs. Areas with 

aggregated DVCs must be influenced by surrounding landscape patterns or features (Finder 

1999). Studies have shown that in addition to population density, two major factors influence 

road-kill rates: (1) proximity of cover and wildlife movement corridors, and (2) traffic volume 

and speed (Forman et al. 2003). Adjacent land-cover distributions and topography may facilitate 

deer movements or reduce driver visibility and increase DVC likelihoods (Finder et al. 1999, 

Clevenger et al. 2003). Transportation factors, such as high traffic volumes and speed, can 

increase collision probability on particular road segments by reducing the time and space for 

crossing opportunities (Case 1978, Langevelde and Jaarsma 2004). Site and landscape variables 

at appropriate spatial scales associated with DVC locations should be evaluated for applying 

effective mitigation measures. Both local and landscape scales may be correlated with collisions 

(Ng et al. 2008).  
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 Road designers need to know where an animal will likely cross when designing new 

roads or managing existing roads to mitigate DVCs (Langen et al. 2009, McCollister and van 

Manen 2010). Road designers have tried incorporating features to reduce DVCs, such as deer-

crossing signs and lighting systems to aid drivers and warning reflectors to deter deer from 

crossing roads; however, their effectiveness has been questionable (Pojar et. al 1975, Reed and 

Woodard 1981, D’Angelo et al. 2006, McCollister and van Manen 2010). Exclusion fencing also 

has been used to reduce DVCs (Ward 1982, Bashore et al. 1985), but may amplify DVCs toward 

fence ends (Clevenger et al. 2001, Gulsby et al. 2011). We need to understand key linkages that 

should be managed to reduce DVCs while maintaining population connectivity (Langen et al. 

2009, McCollister and van Manen 2010).  

Most of the previous work on DVCs have used field evaluation of areas immediately 

adjacent to DVCs (Finder et al. 1999). Only recently have researchers used detailed geographic 

information system (GIS) databases to identify potential factors influencing the probability of 

DVCs, which has primarily been studied at broad scales. Additionally, previous DVC studies 

have not differentiated the types of forested cover (Finder et al. 1999, Hubbard et al. 2000, 

Hussain et al. 2007) that deer may use differently. 

Personnel at Arnold Air Force Base have emphasized DVC reduction. A large number of 

DVCs (272 outside the Security Area) occurred from 2002 to 2009. Previous mitigation efforts 

(2005 ‒ 2006) resulted in the removal of approximately 25 m of adjacent forested cover along 

most of the right-of-way (ROW) on Watterndorf Memorial Hwy, a 19.7-km stretch where nearly 

70% of collisions occurred, but did not effectively reduce DVC numbers (2002 ‒ 2004, n = 91; 

2007 ‒ 2009, n = 95). Therefore, we used ArcGIS (Environmental Systems Research Institute, 

Redlands, CA) to investigate how different cover types close to roads and other potentially 
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important variables affect the spatial distribution of DVCs to provide additional mitigation 

measures. We hypothesized DVCs would be affected by surrounding cover types. We also 

expected DVCs to be concentrated near road intersections and drainage crossings, as well as on 

roads or road segments with higher traffic volumes and speed limits.  

STUDY AREA 

Arnold Air Force Base (AAFB) encompassed 15,815 ha and was located between Manchester, 

Tullahoma, and Winchester in Coffee and Franklin counties, Tennessee. AAFB was divided into 

6 wildlife management units and a 1,489-ha high-fenced Security Area. The land cover was 

primarily loblolly pine (Pinus taeda) plantations (2,223 ha) and oak- (Quercus spp.) dominated 

hardwood forests (9,329 ha) at AAFB. The mid- and understories were comprised mostly of 

dogwoods (Cornus spp.), maples (Acer spp.), sassafras (Sassafras albidum), sourwood 

(Oxydendrum arboretum), blueberries (Vaccinium spp.), hickories (Carya spp.), and blackgum 

(Nyssa sylvatica). Grasslands and early-successional vegetation, primarily in utility rights-of-

way, comprised 898 ha. The remaining land cover (1,895 ha) was buildings, structures, roads, 

wildlife food plots, and open, mowed areas surrounding these features (United States Department 

of Defense 2006). 

 We investigated DVCs on 8 main roads outside the Security Area and within AAFB. 

These roads were 2-laned and totaled 40.0 km in length. Speed limits varied between 40 ‒ 89 

kph (25 – 55 mph), with 75% of road length at 89 kph (55 mph).  

Deer density was regulated by public hunting on the wildlife management units. Beaver 

(2011) reported deer densities of 6.7 deer/km2 in Unit 1 and 8.7 deer/km2 in Unit 2. Adult sex 

ratio was about 2 females to 1 male in the 2 units. 
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METHODS 

DVC data 

We used a GIS database provided by AAFB personnel of reported DVC locations recorded from 

2002 to 2009 (n = 272) on major roads outside the Security Area. Location coordinates of deer 

carcasses within AAFB boundaries and the year of occurrence were recorded by TWRA 

personnel with GPS units. We imported these locations into ArcGIS 9.2 (Environmental Systems 

Research Institute, Redlands, CA) and joined locations to the nearest major road using the 

Hawths Tools extension (Beyer 2004) to represent the road location where the DVC occurred 

(Fig. 3).  

We generated an equal number of randomly distributed locations in ArcGIS 10.0 

(Environmental Systems Research Institute, Redlands, CA) on the major roads within AAFB. 

We rationed equal numbers of random locations to match the DVCs within each year. We 

analyzed DVC locations and random locations by year to address vegetation changes that 

occurred, primarily through loblolly pine harvest.  

We also used DVC data from 2005 to 2009, when month and day of occurrence was 

recorded, to identify periods of high-risk. We included DVCs both inside and outside of the 

Security Area to gain a better understanding of temporal trends. We tallied DVCs by month. 

 Land cover variables and extraction 

We used ArcGIS to extract land cover characteristics associated with DVC and random 

locations. Previous studies created circular buffer zones, which were based on the ecology and 

behavior of the species and the scale of prediction, to characterize DVC locations (Ramp et al. 

2005). We were interested in cover types in close proximity to roads so we created a 125-m 

buffer to extract cover types in ArcGIS. Previous DVC studies have dealt with county and 



39 
 

statewide data and analyzed adjacent roadside characteristics on a large scale (Finder et al. 1999, 

Hubbard et al. 2000). 

We used an ArcGIS shapefile of land cover provided by AAFB along with historical aerial 

imagery from Google Earth (http://www.google.com/earth) and ground-truthing to delineate 

cover types along roads. We categorized land cover types (10- x 10-m cell resolution) into 6 

primary categories of biological relevance to deer. We updated land cover type layers for each 

year from 2002 to 2009 that included the following:  

1) Agriculture – farmed fields maintained in row crops or wildlife food plots, 

2) Anthropogenic disturbed – buildings, residents, roads, and associated open, continuously 

mowed areas, 

3) Early succession – early succession areas maintained by periodic prescribed burning or 

mowing; pine plantations 1 ‒ 5 years old, 

4) Hardwood – deciduous closed-canopy forest, 

5) Pine – pine plantations >5 years old, and  

6) Water – ponds, lakes, and reservoirs. 

We extracted the cell occurrence frequency for cover types surrounding DVC and random 

locations using Hawths Tools extension (Beyer 2004) in ArcGIS 9.2. We calculated cover type 

percentages within the 125-m buffers. To compensate for the road ROW extension along 

Wattendorf Memorial Hwy from 2005 to 2006, we treated DVC and random locations from 2002 

to 2005 as being prior and locations from 2006 to 2009 as subsequent to the ROW extension 

because timely aerial imagery or information was not available to accurately assess the progress 

of the removal.  
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We used ArcGIS 10.0 to measure the distance to the nearest drainage structure or culvert 

along the roads from DVC and random locations. We used data provided by AAFB and the 

Street View feature in Google Earth to mark intersecting locations of drainages that could 

potentially serve as deer movement corridors or hinder driver visibility. 

Transportation variables 

We used annual average daily traffic (AADT) estimates acquired from Tennessee Department of 

Transportation (http://www.tdot.state.tn.us) as well as personal observation to categorize the 

roads into three traffic volume categories (low, medium, and high). We also delineated road 

segments by speed limits using a handheld GPS in the field and the Street View feature in 

Google Earth. Speed limits included 40, 56, 64, 72, and 88 kph (25, 35, 40, 45, and 55 mph, 

respectively) on road segments within AAFB. We used ArcGIS 10.0 to measure the distance 

from DVC and random locations to the nearest intersection of a public, paved road. 

Statistical Analysis 

Attributes for adjacent cover types, distance to nearest drainage, and distance to nearest road 

intersection in addition to the traffic volume and speed limit on the road or road segment of 

occurrence were assigned to each DVC and random location. We did not include agriculture or 

water in the analysis because there was little coverage along roads. 

We used logistic regression in R software version 2.15.2 (R Development Core Team 

2008) to evaluate the relationship of DVCs to land cover and transportation variables. We treated 

traffic volume as a categorical variable and all other variables as continuous. We generated a 

global model of all independent and additive combinations. We modeled harvested stands 

adjacent to DVC and random locations as both pine and anthropogenic disturbed because we 

knew the year of harvest from AAFB records, but not the exact date. We used an information-
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theoretic approach to model selection based on Akaike’s second-order information criterion 

(AICc; Burnham and Anderson 2002). We examined relative importance of models according to 

∆iAICc (∆iAICc = AICci – AICcmin) and AICc weights (wi). We also used model-averaged beta 

(β) estimates across the entire set of models to evaluate variable importance (whether the 

variable beta estimate included 0 within the associated 95% CI) and relationships (positive or 

negative sign of the variable beta estimate). We evaluated goodness-of-fit for our models using 

the Hosmer-Lemeshow test (Hosmer and Lemeshow 1989). 

RESULTS 

Temporal trends of DVCs 

There were temporal trends in DVCs from 2005 to 2009 at AAFB (Fig. 4). The high-risk period 

was October – January when nearly half (n = 95) of DVCs (n = 196) occurred. A lesser peak was 

apparent in April, followed by a sharp decline in May.  

Factors affecting spatial patterns of DVCs 

Modeling harvested pine stands as both pine and anthropogenic disturbed showed similar results. 

Thus, we reported results for these stands as anthropogenic disturbed. The Hosmer-Lemeshow 

test of goodness-of-fit was not significant (P = 0.66), indicating adequate fit for our models. The 

best model included all the additive variable combinations except for percentages of early 

succession and hardwood cover types within 125 m (Table 3). This model accounted for 25% of 

the relative global model weight (wi). Five variables (distance to drainage, distance to road 

intersection, percentage of pine, speed, traffic volume) were consistently present in the top 

models (Table 3). Model-averaged beta estimates (β; Table 4) further supported these variables 

importance considering they did not contain 0 within their associated 95% CI, suggesting a 

definite relationship with DVC likelihood. Based on model averaging, distance to drainage (β = 
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0.0010, 95% CI = 0.0003 to 0.0018) and percentage of pine (β = 0.0232, 95% CI = 0.0080 to 

0.0385) had positive relationships suggesting as distance (m) or percentages were increased, 

DVCs were more likely. Contrary, distance (m) to road intersections (β = -0.0007, 95% CI = -

0.0010 to -0.0003) and speeds (β = -0.0528, 95% CI = -0.0942 to -0.0114) had negative 

relationships suggesting DVCs are more likely closer to road intersections and on road segments 

with decreased speed limits. Also, roads with high traffic volumes increased the odds of DVC 

likelihood by 1.7497 (95% CI = 0.4939 to 3.0055) compared to low traffic volume.  

DISCUSSION 

We accepted our hypothesis that certain cover types affected the likelihood of DVCs. The best 

model included both anthropogenic disturbed and pine cover types within 125 m (Table 3). 

However, beta estimates (β) for anthropogenic disturbed contained 0 within the 95% CI (Table 

4). Pine was in our best model and increased the likelihood of DVCs. Managed pine plantations 

can provide deer a superior resource for forage and cover compared with closed-canopy 

hardwoods. At AAFB, Beaver (2011) found greater forage availability in young, middle-aged, 

and mature pine plantations than closed-canopy hardwoods for forages important to deer during 

the growing season. In addition to forage availability, deer also may use cover types that provide 

optimal cover for predator-avoidance and seasonal thermoregulation (DePerno et al. 2003). The 

thick vegetation in managed pine plantations, especially in young stands, provides an increase in 

cover compared to surrounding closed-canopy hardwoods that lack understory development. 

Therefore, pine plantations abundant in escape and fawning cover may serve as a refuge for deer 

when subjected to increased hunting pressure or predation risks. Additionally, dense pine stands 

are important to deer during winter by minimizing energy expenditures for thermoregulation 

(Moen 1968, Moen 1976, DePerno et al. 2002).  
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At AAFB, deer likely used pine plantations throughout much of the year with the 

exception of fall/early winter when hard mast was abundant in closed-canopy hardwoods. GPS 

data acquired in 2010 – 2011 (see Chapter 1) provided two examples of a female (Fig. 5) and 

male (Fig. 6) that inhabited areas close to road systems and suggested they frequently used pine 

plantations when available, especially in the younger stages of development. Thus, areas with 

greater proportions of pine plantations near roads at AAFB are likely attracting deer and 

consequently contributing to increased DVCs. 

The likelihood of DVCs increased with distance from drainages. In contrast, we expected 

DVCs to be closer to streams and drainages based on previous studies because deer use these 

features as movement corridors and because of decreased driver visibility (Finder et al. 1999, 

Clevenger et al. 2003). Our findings may be a result of heightened road embankments where 

drainages intersect the roads at AAFB, which may deter deer crossings at these elevated areas.  

Transportation variables important in increasing likelihoods of DVCs included closer 

proximity to road intersections, high traffic volumes, and decreased speed limits. Traffic is more 

congested at road intersections, which could amplify DVCs. Additionally, driver awareness may 

be focused more on proximity of other vehicles than deer on roadsides at intersections. We also 

theorized deer crossing attempts could be concentrated at road intersections. For example, 

particular roads or road segments may be less attractive or serve as barriers for deer to cross. 

Therefore, deer movements could be diverted parallel to the road until ultimately becoming 

funneled into an intersecting road.  

High traffic volumes and speeds are typically correlated with increased risk of DVCs 

(Allen and McCullough 1976, Case 1978, Marcoux et al. 2005, Sudharsan et al. 2009). 

Therefore, we expected high traffic volumes to be important in DVCs. Model-averaged beta (β) 
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estimates showed high traffic volume did not contain 0 within the 95% CI in addition to being 

well supported in our top models. Thus, high traffic volumes were likely contributing to 

increased DVCs. These results were not surprising given the majority of DVCs occurred on the 

road with the most traffic (Wattendorf Memorial Hwy). We also expected DVCs to be more 

abundant on road segments with higher speed limits. However, at AAFB, our results showed 

decreases in speed limits increased the likelihood of DVCs. We attribute this primarily to a lower 

speed limit road segment (64 kph or 40 mph) near the Security Area on Wattendorf Memorial 

Hwy. The DVCs in this area were probably more greatly influenced by traffic volume and 

congestion entering and exiting the Security Area along with the increased number of road 

intersections. Additionally, roads such as UTSI Rd and S Hap Arnold Dr (Fig. 3) share the same 

speed limit as Wattendorf Memorial Hwy (mostly 88 kph or 55 mph), yet did not have the 

abundance of DVCs. Therefore, we do not believe speed limit is a primary contributing factor at 

AAFB. 

Seasonal deer behavior is a good indicator for changes in DVC occurrences. Deer activity 

increased during the breeding season, which peaked in mid-late November (see Chapter 1), and 

likely explained increased DVCs from October to January. This period also corresponds with the 

fall-winter hunting season, which theoretically may increase deer movements and DVCs from 

hunter disturbance. However, we found no differences in deer movement rates in addition to 

relatively few deer excursions when hunting pressure was greatest at AAFB (see Chapter 1). 

Also, Sudharsan et al. (2006) found rapid declines in DVCs past opening day of hunting season. 

Therefore, DVCs during these months were probably influenced by increased deer activity from 

the breeding season rather than hunting. The lesser peak in April may be linked to dispersal 

(Reilly and Green 1974, Etter et al. 2002), exaggerated female movements during pre-parturition 
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(D’Angelo et al. 2004), and/or increased female foraging time during spring on road ROWs to 

meet high metabolic demands of gestation and lactation (DeYoung and Miller 2011). We also 

speculate the decrease in DVCs during May is likely influenced by fawning when females reduce 

movements and home ranges (Ozoga et al. 1982, D’Angelo et al. 2004). Public awareness could 

aid in reducing the high numbers of DVCs, particularly during the fall-winter months. Although 

these temporal trends can be useful for identifying periods of high-risk, mitigation efforts 

concentrated around spatial patterns of DVCs will likely be most effective. 

Additional measures should be taken regarding road ROWs at AAFB. Forage availability 

is the prime reason deer enter road ROWs (Feldhamer et al. 1986). Deer at AAFB were often 

observed foraging on road ROWs, especially along Wattendorf Memorial Hwy that had the 

widest ROW. Continuous mowing to adjacent wood lines along roads should be maintained 

throughout the growing season. This mowing would eliminate browse and cover and reduce deer 

incentives to enter road ROWs. Additionally, supplementary preferred food away from road 

ROWs has been shown to manipulate deer movements away from roads, resulting in reduced 

DVCs (Wood and Wolfe 1988). This method of “intercept feeding” could be beneficial at 

AAFB, especially during mid-late winter when DVCs are greatest and forage and hard mast 

availability in wooded areas have declined. During this period, deer may be induced to forage in 

open, road ROWs that are typically abundant in cool-season grasses and forbs thereby enhancing 

the possibility of DVC occurrences. Therefore, using existing utility ROWs or creating areas 

away from roads at AAFB to implement preferred forages may keep deer off of roadsides, 

especially during high-risk periods. 
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MANAGEMENT IMPLICATIONS 

We believe management should focus on adjacent roadside vegetation. Traffic volume, 

drainages, and road intersections, which also contribute to DVCs at AAFB, are much more 

difficult to control. We found increases in pine plantations adjacent to roads were important in 

DVC occurrences. Pine plantations near roads in these systems could draw and hold deer close to 

roadsides, thus likely increasing deer densities and DVCs in these areas. In predominately 

hardwood forests, the location of pine plantations should be planned cautiously, especially if 

deer often use road ROWs to forage. 
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APPENDIX



 

Figure 3. Distribution of deer-vehicle collisions (DVCs) on major roads outside of the 

Area at Arnold Air Force Base, Tullahoma, Tennessee, USA, 2002 
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vehicle collisions (DVCs) on major roads outside of the 

rea at Arnold Air Force Base, Tullahoma, Tennessee, USA, 2002 – 2009. 
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Figure 4. Temporal distribution by monthly occurrence of deer-vehicle collisions (DVCs) at 

Arnold Air Force Base, Tullahoma, Tennessee, USA, 2005 – 2009. 
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Figure 5. Majority of GPS locations from a collared female deer from June 2010 

at Arnold Air Force Base, Tullahoma, TN, USA. She intensively used a young,

plantation that was directly adjacent to UTSI Rd.

  

57 

. Majority of GPS locations from a collared female deer from June 2010 

at Arnold Air Force Base, Tullahoma, TN, USA. She intensively used a young, 8

plantation that was directly adjacent to UTSI Rd. 

 

. Majority of GPS locations from a collared female deer from June 2010 to January 2011 

8-year-old pine 



 

Figure 6. Majority of GPS locations for a collared male from July 2010 

Arnold Air Force Base, Tullahoma, TN, USA.

plantation in close proximity to Wattendorf Memorial Hwy.
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. Majority of GPS locations for a collared male from July 2010 to December 2011 at 

Arnold Air Force Base, Tullahoma, TN, USA. He intensively used a young, 8-year

plantation in close proximity to Wattendorf Memorial Hwy. 

 

December 2011 at 

year-old pine 
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Table 3. Logistic regression models predicting white-tailed deer-vehicle collisions (DVCs) along major public roads outside of the 

Security Area at Arnold Air Force Base in Tullahoma, Tennessee, USA, 2002 – 2009. Models shown are < 4 ∆AICc of top model. 

Model
a
 

Log 

Likelihood K
b
 AICc

c
 ∆AICc

d
 wi

e
 

      

γ = βo + drain + intersect + %AD + %PI + speed + volume -346.25 8 708.77 0.00 0.25 

      

γ = βo + drain + intersect + %PI + speed + volume -348.04 7 710.28 1.51 0.12 

      

γ = βo + drain + intersect + %AD + %HW + %PI + speed + volume -346.22 9 710.78 2.01 0.09 

      

γ = βo + drain + intersect + %AD + %ES + %PI + speed + volume -346.24 9 710.82 2.05 0.09 

      

γ = βo + drain + intersect + %ES + %HW + %PI + speed + volume -346.36 9 711.06 2.29 0.08 

      

γ = βo + drain + intersect +  %HW + %PI  + speed + volume -347.60 8 711.47 2.70 0.07 

      

γ = βo + drain + intersect + %ES + %PI + speed + volume -347.97 8 712.21 3.44 0.05 

      

γ = βo + drain + intersect + %ES + %HW + speed + volume -348.16 8 712.59 3.82 0.04 

      

 

a drain = distance (m) to nearest intersecting drainage or stream, intersect = distance (m) to nearest public, paved intersection, %AD = 

percentage of anthropogenic disturbance within 125 m, %ES = percentage of early succession within 125 m, %HW = percentage of 

hardwood within 125 m, %PI = percentage of pine plantation within 125 m, speed = road segment speed limit (25, 35, 40, 45, 55  
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Table 3 continued. 

mph), volume = road traffic volume (1 = low, 2 = medium, 3 = high).                                                                                                                                                                 

b K = number of parameters including intercept 

c AICc = Akaike’s second-order information criterion 

d 
∆AICc = relative difference in AICc from the model with lowest AICc 

e wi = model weight 
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Table 4. Model-averaged beta estimates (β) for variables included in logistic regression models 

predicting white-tailed deer-vehicle collisions (DVCs) along major public roads outside of the 

Security Area at Arnold Air Force Base in Tullahoma, Tennessee, USA, 2002 – 2009.  

 

Variable
a
 β SE

b
 Lower 95% CI Upper 95% CI 

     
Intercept 1.0166 1.1121 -1.1630 3.1962 

Drain 0.0010 0.0004 0.0003 0.0018 

Intersection -0.0007 0.0002 -0.0010 -0.0003 

% AD 0.0102 0.0085 -0.0066 0.0269 

% ES -0.0064 0.0095 -0.0251 0.0123 

% PI 0.0232 0.0078 0.0080 0.0385 

% HW -0.0080 0.0090 -0.0256 0.0097 

Speed -0.0528 0.0211 -0.0942 -0.0114 

Volume (2) 1.1394 0.6171 -0.0701 2.3488 

Volume (3) 1.7497 0.6407 0.4939 3.0055 

 

a drain = distance (m) to nearest intersecting drainage or stream, intersect = distance (m) to 

nearest public, paved intersection, %AD = percentage of anthropogenic disturbance within 125 

m, %ES = percentage of early succession within 125 m, %HW = percentage of hardwood within 

125 m, %PI = percentage of pine plantation within 125 m, speed = road segment speed limit (25, 

35, 40, 45, 55 mph), volume = road traffic volume (1 = low, 2 = medium, 3 = high). 

b Adjusted standard error 

  



62 
 

VITA 

Peyton Seth Basinger was born in Fairhope, Alabama on December 19, 1986. He graduated from 

Demopolis High School in 2005. Seth then attended Lurleen B. Wallace Community College on 

a baseball scholarship before earning his Bachelor of Science degree in Biosystems Engineering 

at Auburn University in 2010. He then earned a Master of Science degree in Wildlife and 

Fisheries Science at the University of Tennessee–Knoxville.  

 


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	5-2013

	Rutting behavior and factors influencing vehicle collisions of white-tailed deer in Middle Tennessee
	Peyton Seth Basinger


